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This paper presents a mathematical model to describe a three-fluid electroosmotic focusing/pumping
techniques, in which an electrically non conducting fluid is focused and delivered by the combined inter-
facial viscous force of two conducting fluids and pressure gradient. The two conducting fluids are driven
by electroosmosis and pressure gradient. The electrical potential in the two conducting fluids and the
velocity distribution of the steady three-fluid electroosmotic stratified flow in a rectangular microchannel
were presented by assuming a planar interface between the three immiscible fluids. The effects of viscos-
ity ratio, electroosmosis and pressure gradient on velocity profile and flowrate are analyzed to show the
potential feasibility of this technique.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In microfluidic devices, the flow focusing technique provides a
particularly effective means of controlling the passage of chemical
reagents or bio-samples in a microchannel network.

Hydrodynamic and electrokinetic focusing techniques are two
popular flow focusing techniques. Stiles et al. [1] proposed a simple
method to focus the sample stream by using either a single suction
pump or capillary pumping effect. The focused stream width was
controlled by varying the relative resistances of the side and inlet
channel flows. Precise control of the focused sample stream width
is crucial for different applications. For example, in cell counting
and sorting applications performed in micromachined-based flow
cytometers, the width of the focused stream should be at the same
order of magnitude as that of the cell size [2,3]. In addition, several
studies [4] showed that the focused sample stream can be precisely
guided and positioned by adjusting the relative flowrates of the two
neighboring sheath flows. Lee et al. [4] applied flow focusing to
develop various valveless microflow switches. However, the disad-
vantage of the proposed designs for pressure driven flow required
a high flowrate ratio between the sheath and sample fluids to move
the interface location or to switch the sample fluid. More recently,
electroosmotic force was introduced to achieve switching [5,6].

Since the surface-to-volume ratio in microscale is large and
electroosmotic flow (EOF) is governed by surface charge, EOF
would be more efficient than ordinary pressure driven flows [7].
This feature was exploited by EOF pumps. EOF pumps are popular
since they contain no moving parts and are relatively easy to inte-
ll rights reserved.
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grate in microfluidic circuits during fabrication [8]. Lin et al. [9]
reported a numerical model for electrokinetic control, which can
adjust the volume of the sample fluid. Fu et al. [10,11] presented
experimental and numerical results of electrokinetic flow injec-
tion. By applying different voltages at different parts of the chan-
nel, the sample fluid could be directed into a specific outlet
channel. Gao et al. [12,13] derived the analytical solution of veloc-
ity profile and flowrate of two-liquid flow in microchannel which
was driven both by electroosmotic force and pressure gradient.

While most of the previous theoretical studies mainly consider
pressure alone for the three-fluid flow [4,14] or the combined
effects of pressure gradient and electro-osmosis for two-liquid
flow [12], there is few models to discuss about the focusing effect
which takes into account of the combined effects of pressure gra-
dient and electroosmosis. The present work proposes a theoretical
model of three-fluid flow under conditions of electroosmosis, pres-
sure gradient and the surface charge at the interfaces.

Fig. 1(a) shows the model of the three-fluid flow, two fluids (flu-
ids 1 and 3) are conducting fluids with high electroosmotic mobil-
ity, while the focused fluid (fluid 2) is non conducting with a low
electroosmotic mobility. For a given pressure gradient, different
electric fields are applied across the conducting fluids, electroos-
motic forces will be generated and the velocity of conducting fluids
can be regulated depending on the directions and the strength of
the applied electric fields. The fluid with low electroosmotic mobil-
ity is focused and delivered by the interfacial viscous force of the
conducting fluids.

This paper aims to provide a theoretical analysis of the three
fluids driven by the combined electroosmosis and pressure gradi-
ent. Analytical solutions of the EDL in the conducting fluid and
velocities of three fluids are obtained in the fully developed section
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Fig. 1. Schematic representation of the three-fluid electroosmotic stratified flow.
(a) Schematic of the system of three-fluid flow in microchannel. (b) Schematic of
the cross section of three-fluid flow in microchannel and coordinate system.

Nomenclature

a1, a2, a3 liquid fractions
e elementary charge, e = 1.602 � 10�9 [C]
E the electric field
G parameter measuring the electroosmotic force by exter-

nal electric field
h height of the microchannel [m]
Lref the length scale
M electrokinetic effect in the matching conditions
n0 ionic number concentration in the bulk [m�3]
ni ionic number concentration of the type-i in the bulk

[m�3]
kb Boltzmann constant, k = 1.381 � 10�23 [JK�1]
K electrokinetic parameter
p pressure
q flowrate
r position vector [m]
Re Reynolds number
t time [s]
T temperature [K]
u velocity
Uref the velocity scale
v the velocity vector
w half of width of the channel [m]

Greek symbols
q the density of charge
w0 electrostatic potential
n zeta potential

e the permittivity of the dielectric
e0 the permittivity of the dielectric of vacuum
er the dielectric constant comparing with e0

w the electric potential
l dynamic viscosity
j Debye–Hückel parameter [m�1]
qs

q the surface charge density
b dynamic viscosity ratios

Subscripts
ref reference quantity
1 conducting fluid 1
2 non-conducting fluid 2
3 conducting fluid 3
q charge of bulk

Superscripts
0 fundamental state
– dimensionless parameter
p pressure driven
E electroosmotic effect
’ derivative
I integrate

Operators
r gradient
o partial differential
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in a rectangular channel. The flow of the three fluids depends on
the coupling effects of the three fluids which involve the pressure
gradient and electrokinetic driven forces and the interfacial phe-
nomenon. The model accounts for surface charges at the two
liquid–liquid interfaces.

2. Theoretical model

2.1. Electric double layers in the conducting fluid and surface electric
charges at the interface

To analyze the system proposed above, a Cartesian coordinate
system (x, y, z) is used where the origin point, O, is set to be at
the centre of the non conducting fluid and the symmetric line is
shown in Fig. 1(b). Planar interfaces are assumed. The heights of
the conducting fluids and of the non conducting fluid are denoted
as h1, h3 and 2 h, respectively. Half of the width of the channel is
denoted by w. The aspect ratio is defined as v = (h1 + h3 + 2 h)/
2w. As a result, of surface charges, electric double layers (EDLs)
form next to the two liquid–liquid interfaces and the channel walls
that are in contact with the conducting fluid. For a more general
situation, the walls of the microchannel may be made of different
materials, so that the zeta potentials at the bottom and top walls
are denoted as n1, n4, and at the side walls as n2, n5, respectively.
The zeta potentials at the interfaces are n3 and n6. The electroos-
motic flows are along the x-direction. Due to symmetry, only half
of the cross section (z > 0) of the rectangular channel is considered.

The three fluids are driven by the combined pressure and elec-
troosmotic body forces. When the three-fluid flow is fully devel-
oped, the velocities of the three liquids, u1, u2 and u3 at position
r along the channel are independent of x. The subscripts, 1, 2 and
3, denote the conducting fluid 1, non conducting fluid 2 and the
conducting fluid 3, respectively.
In this case, the conducting fluids are considered as symmetric
electrolyte. The electric potentials in the conducting fluids due to
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the charged walls were taken as w1 and w3, respectively. The net
charge densities in the two conducting fluids are qq1 and qq3. The
length scale and velocity scale of the flow are taken as Lref and Vref,
respectively. The independent variable r and dependent variables
u, p, w and qq are expressed in terms of the corresponding dimen-
sionless quantities (shown with an overbar) by

r ¼ Lref �r
u ¼ Uref �u

w ¼ kbT �w=ðz0eÞ
p ¼ q1U2

ref �p

qq ¼ 2n0z0e�qq

8>>>>>><
>>>>>>:

ð1Þ

where q is the liquid density, kb is Boltzmann constant, T is the
absolute temperature, z0 is the valence of the ions, e is elementary
charge, and n0 is the reference value of the ion concentration.

The fluid fractions of fluids 1, 2 and 3 are defined as
a1 ¼ h1

h1þ2hþh3
;a2 ¼ 2h

h1þ2hþh3
and a3 ¼ h3

h1þ2hþh3
, respectively.

The electric potential in the conducting fluids is first considered.
Assuming that the electric charge density is not affected by the
external electric field due to thin EDLs and the small fluid velocity,
the charge convection can be ignored and the electric field equa-
tion and the fluid flow equation are decoupled [15,16]. Based on
the assumption of local thermodynamic equilibrium, for a small
zeta potential, the electric potentials due to the charged wall are
described by the linear Poisson–Boltzmann equation which can
be written in terms of dimensionless variables as

r2 �w ¼ K2 �w ð2Þ

where K = Lrefj is the ratio of the length scale Lref to the characteris-
tic double-layer thickness 1/j. For this case, the reference length is
chosen as Lref = w. Here, j is the Debye–Hückel parameter,

1
j
¼ ekbT

2z2
0e2n0

� �1
2

ð3Þ

where e is the permittivity of the conducting fluid. Based on the lin-
ear approximation, the dimensionless volumetric charge density is
given by

�qq ¼ ��wð�z; �yÞ: ð4Þ

Due to the symmetry of the EDL fields in the rectangular chan-
nel, Eq. (2) is subjected to the following boundary conditions:

ðconducting fluid 1Þ

@�w1=@�z ¼ 0 at �z ¼ 0
�w1 ¼ �n2 at �z ¼ �w
�w1 ¼ �n3 at �y ¼ ��h
�w1 ¼ �n1 at �y ¼ ��h1 � �h

8>>><
>>>:

ð5Þ

ðconducting fluid 3Þ

@�w3=@�z ¼ 0 at �z ¼ 0
�w3 ¼ �n5 at �z ¼ �w
�w3 ¼ �n6 at �y ¼ �h
�w3 ¼ �n4 at �y ¼ �h3 þ �h

8>>><
>>>:

ð6Þ

The solutions to the Poisson–Boltzmann equation subjected to
the above boundary conditions are obtained as

�w1 ¼
X1
j¼0

4�n1

ð2jþ 1Þp ð�1Þjþ1 sinh½ð�hþ �yÞ�
sinhðBj

�h1Þ
cosðkj�zÞ

�
X1
j¼0

4�n3

ð2jþ 1Þp ð�1Þjþ1 � sinh½Bjð�h1 þ �hþ �yÞ�
sinh½Bj

�h1�
� cosðkj�zÞ

þ
X1
p¼1

2�n2

pp
½ð�1Þp � 1� coshðAp1�zÞ

coshðAp1 �wÞ sin
pp
�h1
ð�yþ �hÞ

� �
ð7Þ
for conducting fluid 1 and

�w3 ¼ �
X1
j¼0

4�n4

ð2jþ 1Þp� ð�1Þjþ1 � sinh½Bjð�y� �hÞ�
sinhðBj

�h3Þ
cosðkj�zÞ

þ
X1
j¼0

4�n6

ð2jþ 1Þp� ð�1Þjþ1 � sinh½Bjð�y� �h3 � �hÞ�
sinh½Bj

�h3�
cosðkj�zÞ

�
X1
p¼1

2�n5

pp
½ð�1Þp � 1� coshðAp3�zÞ

coshðAp3 �wÞ sin
pp
�h3
ð�y� �hÞ

� �
ð8Þ

for conducting fluid 3, where

kj ¼ ð2j�1Þp
2 �w

Bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ k2

j

q
Ap1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ ðpp�h1

Þ2
q

Ap3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ ðpp�h3

Þ2
q

8>>>>>>><
>>>>>>>:

ð9Þ

In the above discussion of electroosmosis, the charge state of
the surface is described in terms of surface potential at the shear
plane, which is identified by the zeta potential [17]. This surface
potential is related to the charge density at the surface [18]. From
electrostatics, the normal component of the gradient of the electric
potential, w, jumps by an amount proportional to the surface
charge density, qs

q. That is

qs
q ¼ �e

@w
@y

ð10Þ

It is assumed that the gradient of electric potential in the non
conducting fluid vanishes. Using the reference surface charge den-
sity as (ekbT)/(Lrefz0e), we obtain the dimensionless surface charge
densities at the liquid–liquid interface as

�qs
q1ð�zÞ ¼ �

@�w1ð��h;�zÞ
@�y

¼ �
X1
j¼1

4ð�1Þjþ1Bj

ð2jþ 1Þp
�n1

sinhðBj
�h1Þ
�

�n3

tanhðBj
�h1Þ

" #
cosðkj�zÞ

�
X1
p¼1

2�n2

�h1
½ð�1Þp � 1� coshðAp1�zÞ

coshðAp1 �wÞ ð11Þ

for the surface charge at interface 1–2, and

�qs
q3ð�zÞ ¼ �

@�w3ð�h;�zÞ
@�y

¼
X1
j¼1

4ð�1Þjþ1Bj

ð2jþ 1Þp
�n4

sinhðBj
�h3Þ
�

�n6

tanhðBj
�h3Þ

" #
cosðkj�zÞ

þ
X1
p¼1

2�n5

�h3
½ð�1Þp � 1� coshðAp3�zÞ

coshðAp3 �wÞ ð12Þ

for the surface charge at interface 2–3.
The solutions of Eqs. (11) and (12) show that the contributions of

zeta potential at the top/bottom walls, �n4 and �n1, are relatively small
and the contributions of the side walls, �n2 and �n5 are also relatively
small except when z approaches to w. The volumetric net charge
density, Eq. (4), and the interface charge density, Eqs. (11) and
(12), are required to determine the electrostatic force caused by
the presence of zeta potential. The bulk electrostatic force is consid-
ered as an additional body force exerting on the conducting fluid in
the conventional Navier–Stokes equation. Therefore, the conducting
fluids are under the action of pressure gradient, electrostatic force
and the viscous shear force at the interface. Similarly, the non con-
ducting fluid flows as a result of the pressure gradient and the exter-
nal electrostatic force due to the electrokinetic charge density at the
interface, which will be discussed in the following section.
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2.2. Momentum equations of the three-fluid flow

The dimensionless momentum equation for an incompressible
Newtonian liquid is given by

@ð�q �vÞ
@�t

þr � ð�q �v �vÞ ¼ �r�pþ G�qq þ
1

Re
�lr2 �v ð13Þ

To evaluate the electrokinetic effects, our model assumes that
the flow is formed by three simple immiscible Newtonian liquids
with constant viscosities, which are independent of shear rate
and the local electric field strength. The model assumes:

(1) All the three liquids are Newtonian and incompressible.
(2) The properties of the liquids are independent of local electric

field and ion concentration. The electric field strength and
ion concentration may affect the properties of the conduct-
ing fluids. In the current study, these effects are neglected
[19].

(3) The liquid’s properties are independent of temperature.
Joule heating is neglected for dilute electrolytes and low
field strength [20].

(4) The flow is fully developed with the non-slip boundary con-
dition. The second term on the left-hand side of the Eq. (13),
r � ð�q�v �vÞ, will be vanished.

(5) The pressure gradient is assumed to be uniform along the
channel, and the pressure gradients along y- and z-directions
are both zero.

Because EDLs only form in the conducting fluids, the momen-
tum equations of the three liquids reduce to

@ð�u1Þ
@�t
¼ 1

Re
@2�u1

@�y2 þ
@2�u1

@�z2

 !
þ Gx1 �qq1 �

d�p
d�x

ð14Þ

for conducting fluid 1,

�q3
@ð�u3Þ
@�t
¼

�l3

Re
@2�u3

@�y2 þ
@2�u3

@�z2

 !
þ Gx3 �qq3 �

d�p
d�x

ð15Þ

for the conducting fluid 3, and

�q2
@ð�u2Þ
@�t
¼

�l2

Re
@2�u2

@�y2 þ
@2�u2

@�z2

 !
� d�p

d�x
ð16Þ

for the non conducting fluid 2, where Gx1 ¼
2z0en0Lref Ex1

qref U2
ref

and

Gx3 ¼
2z0en0Lref Ex3

qref U2
ref

. Here, the reference viscosity and the density are

those of the conducting fluid 1 as lref = l1 and qref = q1. Thus,
�l1 ¼ b1 ¼ 1; �l2 ¼ b2 ¼

l2
l1

and �l3 ¼ b3 ¼
l3
l1

are the dynamic viscosity

ratios. The continuity conditions of the velocities at the liquid/liquid
interfaces are:

u1 ¼ u2; at y ¼ �h ðinterface 1� 2Þ ð17Þ
u2 ¼ u3; at y ¼ h ðinterface 2� 3Þ ð18Þ

The shear stress balances, which jumps abruptly at the interface
due to the presence of a certain surface charge density,

l1
@u1

@y
þ Ex1qs

q ¼ l2
@u2

@y
; at y ¼ �h ðinterface 1� 2Þ ð19Þ

l3
@u3

@y
þ Ex3qs

q ¼ l2
@u2

@y
; at y ¼ h ðinterface 2� 3Þ ð20Þ

Here y is the direction normal to the interface of the two liquids. As
planar interface is assumed, the normal direction of interface is
along the y-direction. The dimensionless matching conditions
become
ðinterface1� 2Þ
�u1ð�z;��h;�tÞ ¼ �u2ð�z;��h;�tÞ
@�u1ð�z;��h;�tÞ

@�y ¼ b2
@�u2ð�z;��h;�tÞ

@�y �M1 �qs
q1ð�zÞ

8<
: ð21Þ

ðinterface2� 3Þ
�u3ð�z; �h;�tÞ ¼ �u2ð�z; �h;�tÞ
@�u3ð�z;�h;�tÞ

@�y ¼ ðb2=b3Þ @
�u2ð�z;�h;�tÞ
@�y �M3 �qs

q3ð�zÞ

8<
: ð22Þ

where M1 ¼ ekbTEx1
z0eUref lref

and M3 ¼ ekbTEx3
z0eUref lref

.

In the rectangular-cross-section channel, the dimensionless
boundary conditions for fluids 1, 2 and 3 are respectively,
ðconducting fluid 1Þ

@�u1
@�z ¼ 0 when �z ¼ 0
�u1 ¼ 0 when �z ¼ �w
�u1 ¼ 0 when �y ¼ ��h� �h1

�u1 ¼ 0 when �t ¼ 0

8>>><
>>>:

ð23Þ

ðnon conducting fluid 2Þ
@�u2
@�z ¼ 0 when �z ¼ 0
�u2 ¼ 0 when �t ¼ 0

(
ð24Þ

ðconducting fluid 3Þ

@�u3
@�z ¼ 0 when �z ¼ 0
�u3 ¼ 0 when �z ¼ �w
�u3 ¼ 0 when �y ¼ �h3 þ �h
�u3 ¼ 0 when �t ¼ 0

8>>><
>>>:

ð25Þ

Due to linearity, the velocity of the conducting fluids and of the
non-conducting fluid in Eqs. (14)–(16) can be decomposed into
two parts:

�u ¼ �up þ �uE ð26Þ

where �uE corresponds to the velocity driven by electroosmotic force,
and �up is the velocity driven by pressure gradient. The final veloci-
ties are the superposition of these electroosmotic and pressure-dri-
ven components

�u1 ¼ �up
1 þ �uE

1

�u2 ¼ �up
2 þ �uE

2

�u3 ¼ �up
3 þ �uE

3

8><
>: ð27Þ
2.3. Velocity fields of the three liquids

For the steady state fully developed flow, the dimensionless
velocity for the conducting fluid 1, when Eq. (14) is combined with
Eq. (4), becomes

@2�uE
1

@�z2 þ
@2�uE

1

@�y2 ¼ ReGx1
�w1ð�z; �yÞ ð28Þ

corresponding to the velocity component driven by the electroos-
motic force and
@2�uP
1

@�z2 þ
@2�uP

1

@�y2 ¼ Re
d�p
d�x

ð29Þ

corresponding to the velocity component driven by the pressure
gradient. Similarly, the velocities of the non conducting fluid 2
and the conducting fluid 3 are written in two components as

@2�uE
2

@�z2 þ
@2�uE

2

@�y2 ¼ 0 ð30Þ

and

@2�uE
3

@�z2 þ
@2�uE

3

@�y2 ¼ �
Re
b3

Gx3 �qq3 ð31Þ
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corresponding to the velocity component influenced by the electro-
osmotic flow and

@2�uP
2

@�z2 þ
@2�uP

2

@�y2 ¼ Re
d�p
d�x

1
b2

ð32Þ

@2�uP
3

@�z2 þ
@2�uP

3

@�y2 ¼
Re
b3

d�p
d�x

ð33Þ

corresponding to the velocity component driven by the pressure
gradient.

Using the separation of variables method and substituting the
solution of �w1 from Eq. (7), the analytical velocity profile corre-
sponding to the electroosmotic force, �uE

1, and velocity profile corre-
sponding to the pressure gradient, �up

1, are obtained from Eqs. (27)
and (28), respectively. They are

�uE
1ð�y;�zÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

fftanh½kjð�hþ �h1Þ�coshðkj�yÞþsinhðkj�yÞgbE
1j

�
/1jð��h� �h1Þcoshðkj�yÞ

cosh½kjð�hþ �h1Þ�
þ/1jð�yÞgcosðkj�zÞ ð34Þ

�up
1ð�y;�zÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

1
k3

j

Re
d�p
d�x

ffiffiffiffi
2
�w

r
ð�1Þj coshðkj�yÞ

cosh½kjð�h1þ �hÞ�
�1

( )(

þftanh½kjð�h1þ �hÞ�coshðkj�yÞþsinhðkj�yÞgbp
1j

o
cosðkj�zÞ ð35Þ

The dimensionless velocity profiles for the non conducting fluid
2 (�uE

2, �up
2), and the conducting fluid 3 (�uE

3,�up
3) are also obtained

respectively as

�uE
2¼

ffiffiffiffi
2
�w

r X1
0

aE
2jð�yÞcoshðkj�yÞþbE

2jð�yÞsinhðkj�yÞ
h i

cosðkj�zÞ ð36Þ

�up
2¼

ffiffiffiffi
2
�w

r X1
j¼1

fap
2j coshðkj�yÞþbp

2j sinhðkj�yÞ�
ð�1Þj

b2k
3
j

Re�d�p
d�x
�

ffiffiffiffi
2
�w

r
g�cosðkj�zÞ ð37Þ

�uE
3ð�y;�zÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

(
f�tanh½kjð�hþ�h3Þ�coshðkj�yÞþsinhðkj�yÞg:bE

3j

�
/3jð�hþ�h3Þ

cosh½kjð�hþ�h3Þ�
coshðkj�yÞþ/3jð�yÞ

)
cosðkj�zÞ ð38Þ

�up
3ð�y;�zÞ¼

ffiffiffiffi
2
�w

r X1
j¼0

1
k3

j

Re
b3

d�p
d�x

ffiffiffiffi
2
�w

r
ð�1Þj coshðkj�yÞ

cosh½kjð�h3þ�hÞ�
�1

( )(

þf�tanh½kjð�h3þ�hÞ�coshðkj�yÞþsinhðkj�yÞgbP
3j

o
cosðkj�zÞ ð39Þ

The detailed mathematical derivation of the coefficients /1jð�yÞ
and /3jð�yÞ is presented in Appendix A.

The matching conditions given in Eqs. (21) and (22) can also be
decomposed as

ðinterface 1� 2Þ
�uE

1ð�z;��h;�tÞ ¼ �uE
2ð�z;��h;�tÞ

@�uE
1ð�z;�

�h;�tÞ
@�y ¼ b2

@�uE
2ð�z;�

�h;�tÞ
@�y �M1 �qs

q1ð�zÞ

8<
: ð40Þ

ðinterface1� 2Þ
�up

1ð�z;��hÞ ¼ �up
2ð�z;��hÞ

@�up
1ð�z;�

�hÞ
@�y ¼ b2

@�up
2ð�z;�

�hÞ
@�y

8<
: ð41Þ

and

ðinterface 2� 3Þ
�uE

3ð�z; �hÞ ¼ �uE
2ð�z; �hÞ

@�uE
3ð�z;

�hÞ
@�y ¼ ðb2=b3Þ

@�uE
2ð�z;

�hÞ
@�y �M3 �qs

q3ð�zÞ

8<
: ð42Þ

ðinterface 2� 3Þ
�up

3ð�z; �hÞ ¼ �up
2ð�z; �hÞ

@�up
3
ð�z;�hÞ
@�y ¼ ðb2=b3Þ

@�up
2
ð�z;�hÞ
@�y

8<
: ð43Þ
At interface 1–2, substituting Eqs. (33) and (35) into Eq.
(39) and substituting Eqs. (34) and (36) into Eq. (40); at inter-
face 2–3, substituting Eqs. (35) and (37) into Eq. (41) and
substituting Eqs. (36) and (38) into Eq. (42), we can obtain
the constants

aE
2j ¼ JbE

1j þ KbE
3j þ L ð44Þ

bE
3j ¼ bE

2j=Bþ I ð45Þ

bE
1j ¼ bE

2j=Aþ H ð46Þ

bE
2j ¼ ðCI þ DH þ GÞ=½1� C=B� D=A� ð47Þ

bp
2j ¼ ½O� RT=S� PU=V �=½1� R=S� P=V � ð48Þ

bp
1j ¼ bp

2j=S� T=S ð49Þ

bP
3j ¼ bP

2j=V � U=V ð50Þ

ap
2j ¼ NbP

3j þ Qbp
1j þM ð51Þ

The detailed mathematical derivation of the coefficients A to V,
/01j;/

0
3j is presented in Appendix B.

The contribution of surface charges, �qs
qj1 and �qs

qj3, can be
obtained by applying Fourier transform to �qs

q1 and �qs
q3, these

are

�qs
qj1 ¼ �

ffiffiffiffi
�w
2

r
4ð�1Þjþ1Bj

ð2jþ 1Þp
�n1

sinhðBj
�h1Þ
�

�n3

tanhðBj
�h1Þ

" #

�
ffiffiffiffi
2
�w

r
�
X1
p¼1

2�n2

�h1
½ð�1Þp � 1� � ð�1Þjkj

A2
p1 þ k2

j

ð52Þ

�qs
qj3 ¼

ffiffiffiffi
�w
2

r
4ð�1Þjþ1Bj

ð2jþ 1Þp
�n4

sinhðBj
�h3Þ
�

�n6

tanhðBj
�h3Þ

" #

þ
X1
p¼1

2�n5

�h3
½ð�1Þp � 1� � ð�1Þj � kj

A2
p3 þ k2

j

ð53Þ

The dimensionless volumetric flowrates through the rectangu-
lar-cross-section channel can be defined as �q1 ¼ �qE

1 þ �qp
1 ¼ q1=

ðL2
ref Uref Þ; �q2 ¼ �qE

2 þ �qp
2 ¼ q3=ðL

2
ref Uref Þ and �q3 ¼ �qE

3 þ �qp
3 ¼ q3=ðL

2
ref Uref Þ

The dimensionless flowrates are given as

�qE
1 ¼ 2

Z ��h

��h��h1

Z �w

0

�uE
1ð�y;�zÞd�zd�y ð54Þ

�qp
1 ¼ 2

Z ��h

��h��h1

Z �w

0

�up
1ð�y;�zÞd�zd�y ð55Þ

�qE
2 ¼ 2

Z �h

��h

Z �w

0
�uE

2ð�y;�zÞd�zd�y ð56Þ

�qp
2 ¼ 2

Z �h

��h

Z �w

0
�up

2ð�y;�zÞd�zd�y ð57Þ

and

�qE
3 ¼ 2

Z �hþ�h3

�h

Z �w

0
�uE

3ð�y;�zÞd�zd�y ð58Þ

�qp
3 ¼ 2

Z �hþ�h3

�h

Z �w

0
�up

3ð�y;�zÞd�zd�y ð59Þ

Substituting �uE
1, �up

1, �uE
2, �up

2, �uE
3 and �up

3 into Eqs. (52)–(57), respectively,
yields the dimensionless volumetric flowrates as
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�qE
1 ¼

ffiffiffiffi
2
�w

r X1
j¼0

2 sinðkj �wÞ
kj

1
kj

tanh½kjð�hþ �h1Þ� � ½sinhðkjð�hþ �h1ÞÞ � sinhðkj
�hÞ� þ 1

kj
½coshðkj

�hÞ � coshðkjð�hþ �h1ÞÞ�
� �

bE
1j

þ
ffiffiffiffi
2
�w

r X1
j¼0

2 sinðkj �wÞ
kj

� 1
kj

/1jð��h� �h1Þ
cosh½kjð�hþ �h1Þ�

� ½sinhðkj
�hÞ � sinh kjð�hþ �h1Þ� þ /I

1jð��hÞ � /I
1jð��h� �h1Þ

( )
ð60Þ

�qp
1 ¼

X1
j¼0

4
�w

sinðkj �wÞRe
k4

j

d�p
d�x
ð�1Þj sinhðkjð�hþ �h1Þ � sinhðkj

�hÞ
kj cosh½kjð�h1 þ �hÞ�

� �h1

( )
þ f½coshðkj

�hÞ � coshðkjð�hþ �h1Þ�gbP
1j

þ
X1
j¼0

2

ffiffiffiffi
2
�w

r
sinðkj �wÞ

k2
j

ftanh½kjð�h1 þ �hÞ�½sinhðkjð�hþ �h1Þ � sinhðkj
�hÞ�g ð61Þ

�qE
2 ¼ 4

ffiffiffiffi
2
�w

r X1
j¼0

aE
2j sinhðkj

�hÞ sinðkj �wÞ
k2

j

ð62Þ

�qp
2 ¼ 4

ffiffiffiffi
2
�w

r X1
j¼0

½ap
2j sinhðkj

�hÞ � ð�1Þj

b2k
2
j

Re� d�p
d�x
�

ffiffiffiffi
2
�w

r
�h� sinðkj �wÞ

k2
j

ð63Þ

�qE
3 ¼ 2

ffiffiffiffi
2
�w

r X1
j¼0

(
1
kj
f� tanh½kjð�hþ �h3Þ�½sinhðkjð�hþ �h3ÞÞ � sinhðkj

�hÞ� þ coshðkjð�hþ �h3ÞÞ � coshðkj
�hÞgbE

3j:

� 1
kj

/3jð�hþ �hjÞ
cosh

½kjð�hþ �h3Þ� � ½sinhðkjð�hþ �h3ÞÞ � sinhðkj
�hÞ� þ /I

3jð�hþ �h3Þ � /I
3jð�hÞ

)
sinðkj �wÞ

kj
ð64Þ

�qp
3 ¼ 2

ffiffiffiffi
2
�w

r X1
j¼0

1
k4

j

Re
b3

d�p
d�x

ffiffiffiffi
2
�w

r
ð�1Þj 1

kj

sinhðkjð�hþ �h3ÞÞ � sinhðkj
�hÞ

cosh½kjð�h3 þ �hÞ�
� �h3

( )
� sinðkj �wÞ

(

þ2

ffiffiffiffi
2
�w

r
f� tanh½kjð�h3 þ �hÞ�½sinhðkjð�hþ �h3ÞÞ � sinhðkj

�hÞ� þ ½coshðkjð�hþ �h3ÞÞ � coshðkj
�hÞ�gbP

3j

)
sinðkj �wÞ

k2
j

ð65Þ
The detailed mathematical derivation of the coefficients /I
1j, /I

3j

is presented in Appendix B.
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Fig. 2. EDL profiles at the symmetric line in the two conducting fluids.
3. Results and discussion

In Section 2, the analytical solutions of three fluids driven by
electro-osmosis and pressure gradient are obtained. In the three
liquids, the two conducting fluids hold the upper and bottom parts,
and the non conducting fluid holds the middle part of the rectan-
gular channel. Many methods for determining the zeta potentials
at the wall and at the interface were proposed previously [15].
The zeta potentials at the channel walls, n1, n2, n4 and n5 depend
on the material properties of the wall and the ionic properties of
the fluid [5]. The zeta potential between two immiscible liquids
does not only depend on the ionic properties of two fluids, but also
on the pH and the concentration of the electrolyte [21,22].

3.1. EDL potential in conducting fluids

The dimensionless parameter K is defined as K = jDh to evaluate
parameters affecting EDL profiles. 1/j refers to the characteristic
thickness of the EDL. As the Debye–Hückel parameter

j ¼ ð2z2
0e2n0=e0erkbTÞ1=2 is proportional to the square root of the

bulk ionic concentration n0, the variation of the ionic concentration
will alter the EDL thickness. In this analysis, the concentration of
the two conducting fluids is in the range of 10�6 � 10�5 M, there-
fore, the bulk concentration n0 = 6.022 � 1020 � 6.022 � 1021 m�3

and the EDL dimension parameter K = 87 � 275. The EDL profiles
are shown in Fig. 2 where K ¼ 87 ð1=j � 300nmÞ and
K ¼ 275 ð1=j � 97nmÞ. It shows that the value of K controls the
dimensionless EDL thickness: a larger value of K corresponds to a
thinner EDL.

In Fig. 1(a), the three fluids, (two conducting fluids and a non
conducting fluid) are introduced through a constant pressure
source. When an electric field is applied across the conducting flu-
ids, the external electric field interacts with the net charges within
the double layers and creates electroosmotic forces within the bulk
conducting fluids. If the applied electric field varies, such applied
electroosmotic body forces will be changed accordingly. As a result,
for a given pressure gradient, the velocities and flowrates of the
three liquids depend on the applied electroosmotic force.

From Eq. (25), the velocity �u of three-fluid can be decomposed
into two parts, �up and �uE. �up corresponds to velocity driven by pres-
sure gradient and �uE corresponds to velocity driven by electroos-
motic effect. With the proposed analytical model, we investigate
the following cases. (1) With zero pressure gradient is applied
across the microchannel, the flow is simply a three-fluid electroos-
motic flow with the flow velocity �uE. (2) With zero applied electric,
the flow is simply driven by pressure difference with the flow
velocity �up. (3) When both the pressure gradient and the electric
field are applied across the microchannel, the three-fluid is driven
by the combined electroosmotic force and pressure gradient with
the flow velocity �u.
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3.2. Three-fluid electroosmotic flow

Fig. 3(a) shows the dimensionless velocity profiles, �uE, at the sym-
metric line, at zero pressure gradient, Ex1 = Ex3 = 10 V/cm, and differ-
ent viscosity ratios b2 = 0.5, 1, 2, 3. When electric fields are applied
across the conducting fluids, the conducting fluids 1 and 3 are driven
by electroosmosis, which drags the non conducting fluid 2 by the
hydrodynamic shear force. The flow of the three-fluid is affected
by viscosity ratios, the strength of the external electric fields and
electroosmotic characteristics of the conducting fluids. By this
way, the non conducting fluid can be delivered by electroosmosis.

In Section 2, general equations were derived for the EDL distribu-
tion in the conducting fluid and velocity profiles for the three-fluid
electroosmotic flow through a rectangular microchannel. In the
analysis, the reference potential and the applied electrical potential
are taken at 25 �C as nref ¼ kbT=ðz0eÞ � 25:7mV and Ex1 = Ex3 = 10 V/

cm. The viscosity and density of the KCL solution is lref ¼ 10�3 Pa’s

and qref ¼ 103 kg/m3, respectively. With these reference potential
and viscosity, the Helmholtz–Smoluchowski electroosmotic veloc-

ity is chosen as the reference velocity Uref ¼
Exenref

lref
¼ 5:3� 10�5m=s.

The corresponding Reynolds number is Re � 0:0021.
The flow characteristics depend on the coupling effects of the

three fluids which involve the electrokinetic driving force in the
conducting fluids and the interfacial phenomenon. The interfacial
phenomenon is obtained from the balance of the modified stress
force as shown in Eqs. (21), (22), which involves the opposite elec-
trostatic force exerted on the interface and the hydrodynamic
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shear stress at the liquid–liquid interface. The velocity at the
liquid–liquid interface must match, i.e. the conducting fluid and
the non conducting velocities must be the same and the forces
must be balanced at the interface. To investigate the effect of vis-
cosity ratio between the three fluids, the value of b3 = 1, whereas,
b2 are chosen to have different values.

The electrical body force is resulted from the interaction of the
applied electric fields and the net charge density. This driving force
exists only within the non-neutral charge region – the electrical dou-
ble layer (EDL) in the conducting fluids 1 and 3. Liquid outside the EDL
regions is set in motion passively due to the frictional stresses origi-
nating from the liquid viscosity. The velocity profile of the non con-
ducting fluid 2 is passive. It is purely due to the interfacial shear
stresses dragged by the conducting fluids on the non conducting
fluid. The results indicate that the velocity profiles of the conducting
fluids are strongly dependent on the viscosity ratio, b. Because the
viscosity ratio is small, the flow resistance of the non conducting fluid
is also small. Thus, the non conducting fluid can be driven with less
flow resistance as shown in Fig. 3(a). When the viscosity ratio is high-
er, the flow resistance of the non conducting fluid is higher, resulting
in a steeper velocity gradient at the interface of the conducting fluids.

3.3. Three-fluid flow driven by electroosmosis and pressure gradient

From Fig. 4, when both pressure gradient and electric field are
applied, the three liquids are driven by electroosmotic body force
and pressure gradient. For a given pressure gradient, the velocities
and flowrates of the three liquids depend only on the applied elec-
troosmotic force.

3.3.1. Effect of the applied electric field on velocity profile
Figs. 4–7 show the dimensionless velocity profiles at the sym-

metric line of the three fluids driven by the combined electroosmo-
sis and pressure gradient. In the analysis, a1 = a3 = 0.29, a2 = 0.42
and equal applied electric fields Ex1 = Ex3 are specified.

The effect of applied electric fields on the dimensionless veloc-
ity profile is shown in Fig. 4. The results indicate that for a given
pressure gradient, the velocity profile �u of the three-fluid strongly
depends on the applied electroosmotic body force; hence the vol-
umetric flowrates of the three-fluid can be controlled. With zero
electric field, Ex1 = Ex3 = 0 V/cm the flow is in fact a pressure driven
flow of a single liquid, showing the parabolic velocity profile, �up.
We can compare the analytical solution of the three-fluid model
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Fig. 7. Dimensionless velocity distribution at the symmetric line for different
values of pressure gradient, d�p=d�z (Ex1 = Ex3 = 10 V/cm, b1 = 1, b2 = 5, b3 = 1).
with the one-dimensional, fully developed Navier–Stokes equation
under the steady state condition [23] it is clearly seen that the
results from the two different models are identical.

The relationship between �up; �uE and �u for d�p=d�z ¼ 1500, Ex1 =
Ex3 = 150 V/cm and b3 = b2 = 1 is shown in Fig. 5. The result shows
that the velocity profile, �u of a three-fluid driven by the combined
electro-osmosis and pressure gradient is the superposition of the
solutions of a three-fluid electroosmotic velocity profile �uE and a
pressure-driven parabolic profile, �up.

Fig. 6 shows the dimensionless velocity profiles �u at the sym-
metric line when b2 = 5,b1 = b3 = 1, d�p=d�z = 1000. The result indi-
cate that the velocity profile of the conducting fluid are strongly
dependent on the viscosity ratio, b2. For a given pressure gradient,
a higher viscosity ratio b2 and consequently a higher flow resis-
tance of the non conducting fluid result in a steeper velocity gradi-
ent at the interface of the conducting fluids.

3.3.2. Effect of pressure gradient, d�p=d�z, on velocity profile
Fig. 7 shows the effect of applied pressure gradient on the dimen-

sionless velocity profile at the symmetric line of the three-fluid
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driven by the combined electroosmosis and pressure gradient. In the
analysis,a1 = a3 = 0.29,a2 = 0.42, b2 = 5, b1 = b3 = 1 and equal applied
electric fields Ex1 = Ex3 = 10 V/cm are specified. The results indicate
that for a given applied electric field the velocity profile �u of the
three-fluid strongly depends on the applied pressure gradient. With
zero pressure gradient (d�p=d�z ¼ 0), the flow is simply a three-fluid
electroosmotic flow �uE. The velocity �u increases with the applied
pressure gradient as shown by the linear combination of the electro-
osmotic profile �uE, and the pressure-driven profile �up. At a high pres-
sure gradient, the electroosmotic flow effect becomes weaker.

3.3.3. Effect of viscosity ratio, b2, on velocity profile
The flow characteristics depend on the coupling effect of the

three fluids which involve the electrokinetic phenomenon of the
conducting fluids and the interfacial stresses at the interface of
adjacent fluids. To investigate the effect of viscosity ratio between
the three fluids, the value of b3 = 1 is set to be a constant, whereas,
b2 are chosen to vary. Fig. 3(b) shows the dimensionless velocity
profiles at the symmetric line at d�p=d�z ¼ 1000, Ex1 = Ex3 = 10 V/
cm, and different viscosity ratios b2 of 0.5, 1, 2 and 3 respectively.
The velocity profiles of the three-fluid strongly depend on the vis-
cosity ratio, b2. For a given pressure gradient and applied electric
fields, if the viscosity ratio b2 decreases, the non conducting fluid
can be driven with less flow resistance.

The comparison between theoretical analysis and the published
two-fluid experimental data [24] is shown in Fig. 8. To simulate the
flow, a infinite viscosity of �l3, is assumed which make the conduct-
ing fluid 3 resemble that of the channel wall. Hence we can com-
pare our theoretical analysis with the two-fluid data. Our results
agree well with the published experimental data.

Fig. 9 shows the influence of the viscosity ratio b2 on the volu-
metric flowrate. For a given pressure gradient and the applied elec-
tric fields, volumetric flowrates of the three fluids increase with
decreasing viscosity ratio b2. A rapid increase in the flowrate occurs
when the viscosity ratio b2 decrease from 10 to 0.1.

4. Conclusion

In this paper, we presented a theoretical model of the pressure
driven three-fluid flow in rectangular microchannels with electro-
osmotic effect. Under the Debye–Hückel linear approximation,
analytical solutions of electric distribution were obtained by solv-
ing the linear Poisson–Boltzmann equation. The solutions of mod-
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Fig. 8. Comparison of the velocity profile between theoretical model and the two-
fluid experimental data [24] (Ex1 = Ex3 = �40 V/cm, b1 = 1, b2 = 1.5, b3 = 104).
ified Navier–Stokes equations were presented for a steady, fully
developed laminar three-fluid flow under the combined effects of
pressure gradient, electro-osmosis and surface charges at the li-
quid–liquid interface. The comparison between the predictions of
the velocity profile from the theoretical analysis and the published
data show good agreement.
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Appendix A

In the following, we will define several auxiliary functions
which facilitate the analytical evaluation of the pertinent expres-
sions in the present work. All these functions are obtained through
integrating matching conditions, velocity profiles and shear stress
at the interface. They are defined as follow:

/1jð�yÞ ¼
ffiffiffiffi
�w
2

r
4� Re� Gx1 � ð�1Þjþ1
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